9 resultados para liver membrane

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The coordinated exit of intracellular pathogens from host cells is a process critical to the success and spread of an infection. While phospholipases have been shown to play important roles in bacteria host cell egress and virulence, their role in the release of intracellular eukaryotic parasites is largely unknown. We examined a malaria parasite protein with phospholipase activity and found it to be involved in hepatocyte egress. In hepatocytes, Plasmodium parasites are surrounded by a parasitophorous vacuole membrane (PVM), which must be disrupted before parasites are released into the blood. However, on a molecular basis, little is known about how the PVM is ruptured. We show that Plasmodium berghei phospholipase, PbPL, localizes to the PVM in infected hepatocytes. We provide evidence that parasites lacking PbPL undergo completely normal liver stage development until merozoites are produced but have a defect in egress from host hepatocytes. To investigate this further, we established a live-cell imaging-based assay, which enabled us to study the temporal dynamics of PVM rupture on a quantitative basis. Using this assay we could show that PbPL-deficient parasites exhibit impaired PVM rupture, resulting in delayed parasite egress. A wild-type phenotype could be re-established by gene complementation, demonstrating the specificity of the PbPL deletion phenotype. In conclusion, we have identified for the first time a Plasmodium phospholipase that is important for PVM rupture and in turn for parasite exit from the infected hepatocyte and therefore established a key role of a parasite phospholipase in egress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The protozoan parasite Plasmodium is transmitted by female Anopheles mosquitoes and undergoes obligatory development within a parasitophorous vacuole in hepatocytes before it is released into the bloodstream. The transition to the blood stage was previously shown to involve the packaging of exoerythrocytic merozoites into membrane-surrounded vesicles, called merosomes, which are delivered directly into liver sinusoids. However, it was unclear whether the membrane of these merosomes was derived from the parasite membrane, the parasitophorous vacuole membrane or the host cell membrane. This knowledge is required to determine how phagocytes will be directed against merosomes. Here, we fluorescently label the candidate membranes and use live cell imaging to show that the merosome membrane derives from the host cell membrane. We also demonstrate that proteins in the host cell membrane are lost during merozoite liberation from the parasitophorous vacuole. Immediately after the breakdown of the parasitophorous vacuole membrane, the host cell mitochondria begin to degenerate and protein biosynthesis arrests. The intact host cell plasma membrane surrounding merosomes allows Plasmodium to mask itself from the host immune system and bypass the numerous Kupffer cells on its way into the bloodstream. This represents an effective strategy for evading host defenses before establishing a blood stage infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In some patients with acute respiratory failure, the native lungs do not recover during extracorporeal membrane oxygenation (ECMO), or complications occur that preclude the meaningful continuation of ECMO therapy. In such cases, emergency lung transplantation (LTx) represents the only therapeutic alternative. Between May 1988 and April 1993, the authors have performed LTx after ECMO support in five of 111 lung or heart-lung transplantations (4.5%). Two patients presented with early graft failure after unilateral LTx. In these patients, ECMO was used as a bridging device to unilateral re-LTx for 1, resp. 11 days. One patient died 6 months post-operatively from chronic rejection; the other underwent a third LTx and is doing well after 42 months. In three further patients already treated with ECMO for 5 to 12 days for ARDS (n = 2) or acute respiratory failure after liver and kidney transplantation, the native lungs did not recover (n = 2) or pulmonary hemorrhage developed. The last patient (unilateral LTx) and one of the former (bilateral LTx for ARDS) are long-term survivors (12, 30 months). The remaining patient (unilateral LTx for ARDS) had severe multiorgan failure at the time of his operation and died intraoperatively. The authors conclude that ECMO no longer represents a contraindication to subsequent LTx. Their results also support the continued investigation of this combined therapeutic approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mitogen-activated protein kinases (MAPKs) regulate key signaling events in eukaryotic cells. In the genomes of protozoan Plasmodium parasites, the causative agents of malaria, two genes encoding kinases with significant homology to other eukaryotic MAPKs have been identified (mapk1, mapk2). In this work, we show that both genes are transcribed during Plasmodium berghei liver stage development, and analyze expression and subcellular localization of the PbMAPK1 protein in liver stage parasites. Live cell imaging of transgenic parasites expressing GFP-tagged PbMAPK1 revealed a nuclear localization of PbMAPK1 in the early schizont stage mediated by nuclear localization signals in the C-terminal domain. In contrast, a distinct localization of PbMAPK1 in comma/ring-shaped structures in proximity to the parasite's nuclei and the invaginating parasite membrane was observed during the cytomere stage of parasite development as well as in immature blood stage schizonts. The PbMAPK1 localization was found to be independent of integrity of a motif putatively involved in ATP binding, integrity of the putative activation motif and the presence of a predicted coiled-coil domain in the C-terminal domain. Although PbMAPK1 knock out parasites showed normal liver stage development, the kinase may still fulfill a dual function in both schizogony and merogony of liver stage parasites regulated by its dynamic and stage-dependent subcellular localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently it has been shown in rodent malaria models that immunisation with genetically attenuated Plasmodium parasites can confer sterile protection against challenge with virulent parasites. For the mass production of live attenuated Plasmodium parasites for vaccination, safety is a prerequisite. Knockout of a single gene is not sufficient for such a strategy since the parasite can likely compensate for such a genetic modification and a single surviving parasite is sufficient to kill an immunised individual. Parasites must therefore be at least double-attenuated when generating a safe vaccine strain. Genetic double-attenuation can be achieved by knocking out two essential genes or by combining a single gene knockout with the expression of a protein toxic for the parasite. We generated a double-attenuated Plasmodium berghei strain that is deficient in fatty acid synthesis by the knockout of the pdh-e1α gene, introducing a second attenuation by the liver stage-specific expression of the pore-forming bacterial toxin perfringolysin O. With this double genetically attenuated parasite strain, a superior attenuation was indeed achieved compared with single-attenuated strains that were either deficient in pyruvate dehydrogenase (PDH)-E1 or expressed perfringolysin O. In vivo, both single-attenuated strains resulted in breakthrough infections even if low to moderate doses of sporozoites (2,000-5,000) were administered. In contrast, the double genetically attenuated parasite strain, given at moderate doses of 5,000 sporozoites, did not result in blood stage infection and even when administered at 5- to 20-fold higher doses, only single and delayed breakthrough infections were observed. Prime booster immunisation with the double genetically attenuated parasite strain completely protected a susceptible mouse strain from malaria and even a single immunisation conferred protection in some cases and lead to a markedly delayed onset of blood stage infection in others. Importantly, premature rupture of the parasitophorous vacuole membrane by liver stage-specific perfringolysin O expression did not induce host cell death and soluble parasite proteins, which are released into the host cell cytoplasm, have the potential to be processed and presented via MHC class I molecules. This, in turn, might support immunological responses against Plasmodium-infected hepatocytes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exoerythrocytic Plasmodium parasites infect hepatocytes and develop to huge multinucleated schizonts inside a parasitophorous vacuole. Finally, thousands of merozoites are formed and released into the host cell cytoplasm by complete disintegration of the parasitophorous vacuole membrane. This, in turn, results in death and detachment of the infected hepatocyte, followed by the formation of merosomes. The fast growth of the parasite and host cell detachment are hallmarks of liver stage development and can easily be monitored. Here, we describe how to translate these observations into assays for characterizing parasite development. Additionally, other recently introduced techniques and tools to analyze and manipulate liver stage parasites are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The circulating, endocrine renin-angiotensin system (RAS) is important to circulatory homeostasis, while ubiquitous tissue and cellular RAS play diverse roles, including metabolic regulation. Indeed, inhibition of RAS is associated with improved cellular oxidative capacity. Recently it has been suggested that an intra-mitochondrial RAS directly impacts on metabolism. Here we sought to rigorously explore this hypothesis. Radiolabelled ligand-binding and unbiased proteomic approaches were applied to purified mitochondrial sub-fractions from rat liver, and the impact of AngII on mitochondrial function assessed. Whilst high-affinity AngII binding sites were found in the mitochondria-associated membrane (MAM) fraction, no RAS components could be detected in purified mitochondria. Moreover, AngII had no effect on the function of isolated mitochondria at physiologically relevant concentrations. We thus found no evidence of endogenous mitochondrial AngII production, and conclude that the effects of AngII on cellular energy metabolism are not mediated through its direct binding to mitochondrial targets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cysteine proteases mediate liberation of Plasmodium berghei merozoites from infected hepatocytes. In an attempt to identify the responsible parasite proteases, we screened the genome of P. berghei for cysteine protease-encoding genes. RT-PCR analyses revealed that transcription of four out of five P. berghei serine repeat antigen (PbSERA) genes was strongly upregulated in late liver stages briefly before the parasitophorous vacuole membrane ruptured to release merozoites into the host cell cytoplasm, suggesting a role of PbSERA proteases in these processes. In order to characterize PbSERA3 processing, we raised an antiserum against a non-conserved region of the protein and generated a transgenic P. berghei strain expressing a TAP-tagged PbSERA3 under the control of the endogenous promoter. Immunofluorescence assays revealed that PbSERA3 leaks into the host cell cytoplasm during merozoite development, where it might contribute to host cell death or activate host cell proteases that execute cell death. Importantly, processed PbSERA3 has been detected by Western blot analysis in cell extracts of schizont-infected cells and merozoite-infected detached hepatic cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rodent malaria parasite Plasmodium berghei develops in hepatocytes within 48-52h from a single sporozoite into up to 20,000 daughter parasites, so-called merozoites. The cellular and molecular details of this extensive proliferation are still largely unknown. Here we have used a transgenic, RFP-expressing P. berghei parasite line and molecular imaging techniques including intravital microscopy to decipher various aspects of parasite development within the hepatocyte. In late schizont stages, MSP1 is expressed and incorporated into the parasite plasma membrane that finally forms the membrane of developing merozoites by continuous invagination steps. We provide first evidence for activation of a verapamil-sensitive Ca(2+) channel in the plasma membrane of liver stage parasites before invagination occurs. During merozoite formation, the permeability of the parasitophorous vacuole membrane changes considerably before it finally becomes completely disrupted, releasing merozoites into the host cell cytoplasm.